
N9]:20666

A COLLISION DETECTION ALGORITHM for TELEROBOTIC ARMS

Doan Minh Tran

ST Systems Corporation

4400 Forbes Blvd

Lanham, MD 20706

Maureen O'Brien Bartholomew

Code 735

NASA Goddard Space Flight Center

Greenbelt, MD 20771

Abstract

In this paper, the telerobotic manipulator's collision

detection algorithm is described. Its applied structural

model of the world environment and template represen-

tation of objects is evaluated. Functional issues that

are required for the manipulator to operate in a more

complex and realistic environment are discussed.

1 Introduction

Collision detection is the process of detecting imminent col-

lision between moving objects with one another, or a mov-

ing object with stationary objects. In a telerobotic environ-

ment, detection is concerned with not only collisions between

a robot and its surrounding objects but also collisions with it-

self (i.e., collision between arm's links). Moreover, it involves

distinguishing between unintentional collisions and intentional

contact with objects in space. Consider the fact that an end-

effector contacting an object such as a coffee mug would not

constitute a collision if its goal is to pick up the mug. On the

other hand, a collision would occur if the end-effector (or an-

other part of the arm) was to hit any other close-by objects,

such as a book located next to the coffee mug. Thus, the colli-

sion detection problem requires robot environment awareness

on one hand; while on the other, it demands detailed knowl-

edge of objects' characteristics to avoid collisions or to make

contact. In other words, collision detection is a process of dif-

ferentiating between collisions and contacts.

Currently, our collision detection problem is defined by a teler-

obotic system at NASA Goddard Space Flight Center (GSFC)

which consists of two slave Robotics Research Corporation

(RRC) arms. Its implementation is part of the safety sys-

tem which is proposed to serve independently as a redundant

monitor of the control system. In addition to redundant col-

lision checks, the safety system performs redundant monitor-

ing of the safety parameters such as velocities, accelerations,

torques, and motor currents of the RRC arms. Based on these

parameters, it should safely shut down the robot if an attempt

is made by the operator to exceed their allowable limits. It

also has the capability to override the automatic telerobotic

sating functions from the workstation or from other systems.

The RRC arm is a seven degree of freedom manipulator, with

cylinder shaped links as shown in Figure 1. Movement of the

1

Figure h An RRC arm. (Robotics Research Corp. Milford,

OH 45150)

_ _;_._

Figure 2: An example of the environment in which the RRC

arms operate

links are rotational in joint-space coordinates. Presently, the

arms are in an environment which can be roughly represented

as cylindrical or rectangular-shaped objects. In particular, the

environment is sparse and well defined with various stands sup-

porting either cameras or Orbital Replacement Units (ORUs).

The tasks consists of using the RRC arms to picking, moving,

and placing ORU boxes from one location to another. Figure 2

illustrates a typical environment in which the arms operate. It

should be noted that the environment is dynamic as the result

of OKU boxes being moved by the arms. Therefore, updating

of objects' location is necessary.

194

2 Collision Detection Algorithm

Having defined the collision problem that may occur in a teler-

obotic environment and identified the contraints of the manip-

ulators, we will now discuss the collision detection algorithm.

In this section, we describe the octree structure for modelling

the world and detecting imminent collisions followed by a dis-

cussion of an object template representation for distinguishing

between intentional contact and unintentional collisions.

2.1 The Octree

In the following paragraph, we describe the octree structure,

decomposition of the robot's workspace into regional octree

nodes, functional updates for detecting imminent collisions,

and node adjustment to reflect environmental changes.

An octree is a data structure encoding a space as a tree of

either empty nodes or one which consists of a root node and

eight disjoint nodes, each of which can be another octree.

The definition of an octree that has just been given illustrates

three points. First, an octree of empty nodes is used to indi-

cate object-free space. Second, a node is decomposed into eight

sub-nodes (called octants) when its contents satisfies some pre-

defined criteria for refining the resolution (this is referred to

as the decomposition rule which is discussed later). Third, it

exhibits recursive inheritance, that is, each octree node is a

sub-octree.

Since we are dealing with spatial index octrees, it is convenient

to introduce the distinction between them and image represen-

tation octrees. In image processing, octree representations are

used to define the shape of object by decomposing and repre-

senting object's vertices, edges, and planar surfaces as nodes

(this is known as a polytree [2]). Another way of describing ob-

ject features is by subdividing the volumes until all leaf nodes

are either empty or fully occupied by that object's bounding

surface (this is referred to as a region octree [7,6,3]). In this

sense, the octree node is used to denote an object's shape, as

well as for storing object properties such as color and density.

A spatial indexing octree, on the other hand, is used to encode

the space (in this case, it is the manipulators' workspace). The

spatial indexing octree divides the workspace into a set of cubes

Figure 3: The workspace is partitioned into cubes of various

size.

in various volumes. For the sake of consistency, we will refer

to the cubes as nodes. Each node, in turn, could either be

empty or contain one or more objects. In this context, nodes

in an octree denote volumes while their contents hold a list of

objects within that regional space [4].

Figure 4 explains our use of the octree. The robot's workspace

which consist of a manipulator and various objects can be en-

closed in an imaginary cube. This cube is subdivided into

eight equal regions, and numbered as shown in Figure 3. In

the octree representation, the whole workspace would be de-

noted as a root node with each sub-region as a sub-node. The

workspace in each sub-region can again be subdivided as before

and associated with sub-nodes. This process can be repeated

until all leaf nodes are either enipty or contain no more than

three object within it (assuming that the resolution criteria

used here allows less than four objects per node). The final

octree is shown in Figure 4.

In brief, image representation octrees require a separate octree

representation for each object while spatial modeling needs a

single octree for encoding all objects. Consequently, spatial in-

dex octrees require different methods for splitting nodes than

image representation octrees. In the following paragraphs, two

methods of decomposing spatial indexing octrees, the compat-

195

I"7= Empty Space

• = The region isfilledwith objects

Figure 4: The Octree representation of the correspondence
workspace.

ibility decomposition rule and n-objects rule, are introduced.

In order to grasp the concept of the compatibility decomposition

rule, we need to understand the notion of compatible objects.

According to Schaffer and Herb [4], objects or parts of objects

(the term primitive is used in their paper to covey both object

and parts of an object) are compatible if it is impossible for

them to collide with each other. For example, an ORU box

sitting on top of a stand could not be considered as a collision

between the ORU and the stand; thus, these objects are com-

patible. Mutual compatibleness also exists between any two

geometrical abutting links of the manipulator, assuming that

the servo level controllers do not allow an angle less than that

which would cause the two links to come into contact. In brief,

the compatibility decompostion rule dictates the subdivision of

an octree node into sub-nodes only if it contains objects that

are not mutually compatible. In addition, the compatibility

rule appears to involve less octree-updating in a static envi-

ronment, because updating is only required when a new object

is introduced into any region. It is not obvious, however, how

compatibility among objects is determined in a dynamic sit-

uation. Consider our previous example, compatibility exists

between the ORU on top of the stand; but what about picking

the ORU box up and then dropping it onto the stand. Clearly,

this free-falling/contact action would be considered as a colli-

sion between these two objects. Thus, the test of compatibility

among objects involves both functional knowledge of objects

as well as knowledge of the task being performed.

An alternative decomposition rule might be to subdivide a

node if it contains more than "n" objects. This rule is similar

to the region octree that has been discussed before. Instead of

subdiving a node when an object's volume partially fills that

region, nodes are split until all leaf nodes contalnt less than or

equal to n objects. From the outset, this rule tends to require

a lot of updating of the octree as objects are moved from one

place to another, regardless of whether they are moved inside

or outside of their current regional node. In light of this, the n-

object decomposition rule is faster than the compatibility rule,

since it involves no knowledge processing and updating is done

only to nodes that contain the moving object(s).

As mentioned before, octree updating is performed everytime

objects (i.e., the robot arm, part of the arm, or a box) are

displaced. In this context, updating involves both modifying

the content of those nodes and checking for collision among

196

objects within a regional node or with neighboring regions.

When objects are moved into another region, node content

must be updated. This involves removing the object from its

current node and inserting it into the new region. To locate the

nearby node, the neighbor-finding technique (a traversing tech-

nique for locating object's neighboring regions in octree [8]) is

used. Neighbor-finding works by first locating the octree node
I

that contains the desired object; then, begin traversing up the

tree until a nearest common-ancestor for both the object's node

and its desired neighbor node, is found. From that common-

ancestor, it descends in a mirror-like direction while ascending

I the tree. The final stop will be the node that represents the

object's neighboring region. It should be noted that, node in-

sertion might change the octree structure. This depends on

the decomposition rule that one uses in the algorithm.

According to Boyse [1], detecting a collision for a pair of objects

can be done by interference checking of an object's edge with

a face of the other or vice-versa. In doing so, one of two things

may occur: an object's edge passes through the interior of the

other object's face; or it contacts the other object's face bound-

ary. For the former, collision can be detected by determining

the locus of each endpoint of the moving edge and examining

these loci (space curves) to see whether any intersect the face.

In the later case, collision is detected by examining the bound-

ary of the face to see if it intersects the surface generated by

the moving edge.

In summary, spatial indexing octrees are useful for detecting

imminent collision within the robot's workspace, by encoding

the environment as a set of nodes (i.e., cubes) with various

volumes. Each node could be subdivided into a set of octants

for better resolution (or for manipulation), if its contents sat-

isfy a decomposing criteria. When objects are moved (unless

the compatibility decomposition rule is applied and the objects

are moved within its current region), the edge-face algorithm

is applied to check for collision among objects, and the nodes'

structure and/or content are modified to reflect the changes in

the environment.

2.2 Template Representation

The problem of distinguishing intentional contact from unin-

tentional collision of objects can be resolved by relying on the

system's knowledge of the objects' role with respect to the

task. In other words, objects can be categorized from the task

as: (1) objects that are manipulated by the telerobot's manip-

ulator and thus come in to contact with it; (2) objects that

are caused to collide intentionaly with other objects by the

manipulator; or (3) objects which are neither manipulated by

the end-effector, nor collided with any other objects. All other

types of contacts are interpreted as unintentional collisions.

Imagine an ORU box laying upright on a table. Suppose that

in addition to the ORU's position and size, the system also

knows it to be a manipulative object (i.e., being picked-up,

moved, or placed at other locations by the telerobotic manip-

ulator). The table is viewed as a contacted object. Now, as

the end-effector approachs the predefined collision range of the

OI_U, the collision detection system would assume that the

telerobotic's goal is to pick-up that object; thus, it does not

view this as an unintented collision (and prohibit any further

advancement of the arm). Rather, it allows the arm to proceed

at a slower velocity and eventually empowers the end-effector

to come into contact with the ORU. The same procedure could

be applied to the situation where the manipulator places the

ORU on the table; it would not view the contact between these

two objects (the ORU and the table) as unintentional collision.

However, contact between the telerobotic manipulator and the

table would be seen as an unintentional coUision since the ta-

ble is viewed by the robot as unmanipulative. Thus, system

knowledge of objects' roles enables it to differentiate between

intentional contact and unintentional collision. Let us discuss

how knowledge of objects' characteristics could be represented

internally.

Objects can be defined in terms of their primitive role as: sup-

porting, or manipulating, or neither; in addition to their shape,

size, and position. The supporting role denotes an object that

can be collided with by another object, providing it is sta-

tionary before and during the time of collision. For example,

the table illustrated above is defined as having the supporting

role, and the ORU as having the manipulating role. While the

supporting role allows collision between two objects other than

the telerobotic manipulator, the manipulating role permits an

object (or area of an object) that the end-effector of the robot

arm can collide with. One can specify whole or part of object

as supportive or manipulative.

More formally, objects can be defined as follows:

197

(object-name

(primitive-role dimension position)) or

(object-name

((component-name

(primitive-role dimension position))

(component-name

(primitive-role dimension position))

(:))

dimension position))

For example, take a (30"Wx42"Lx38"H) table that is located

60"x50" away from the arm. Its (30"x42"x4") table-top has

the supporting role (it allows other objects to contact). The

remaining components of the table must be protected from

contact. It could be described as:

(table

((table-top

(supporting (30 42 4) (60 50 34))

(30 42 38) (60 so 0))

Given the object representation above, we intend to solve the

problem of differentiating intentional and unintentional colli-

sion. Consider, for example, where the manipulator approaches

an ORU that is located on a table. Under the current situa-

tion, the system predicts an imminent collision: between the

arm and the table; and between the end-effector with the ORU.

A search of object characteristics in the database indicates that

a supporting role was assigned to the table, while the ORU ob-

ject has a manipulating role. Based on this information, the

system assumes the user intends for the end-effector to contact

the ORU but not the table. Thus, it places certain constraints

on future movement of the arm. One possible constraint would

be for the system to decrease the arm's velocity toward the

ORU box; and to inhibit further advancement in the direction

of the table.

Another problem in differentiating unintentional collisions from

intentional contacts is where the arm holding an object (such

as, a ORU box) is about to collide with a stationary object. In

the case where the stationary object is supportive (i.e., a table),

then it is solvable by assuming that the telerobot's intention is

to place the holding object on it. But if the stationary object

is manipulative (like another ORU box); then, the event would

be declared as an unintentional collision.

Another advantage of this object template representation is, it

allows us to logically manipulate parts of an object as unique

entities, while it retains the physically inseperable aspects of

these components as they make up an object. Hence when an

object is moved, all of its components are moved.

In short, knowledge of objects' characteristic (such as support-

ing or manipulating) enables the system to predict human op-

erator's intention for the manipulator. Thus, it can inhibit

or permit further advances of the arm. Such an approach,

however, might lead to collisions of objects due to incorrect

assumptions. Nevertheless, these collisions would most likely

cause only small physical damage, since the velocity of mov-

ing objects are forced by the control system to be very small.

A more fail-sage approach to recognizing intentional contact

from unintentional collision is to querry the human operator,

at the first sight of an imminent collision. However, this would

require tedious interaction between the system and the opera-

tor, slowing down task performance.

3 Conclusion

In conclusion, a collision detection algorithm for a telerobotic

environment must have the ability not only to detect immi-

nent collisions, but also the capability to differentiate between

an intentional contact and an unintentional collision. In this

paper, we have introduced an octree structure approach to de-

tect imminent collisions. It is a divide-and-conquer algorithm

that decomposes the robot workspace into sub-regions. Each

sub-region can be empty or occupied with objects. When an

object is moved, its edges' intersection with other objects' faces

(or vice versa) are calculated in order to detect an imminent

collision in the region. On the whole, the spatial index octree

approach provides a relatively structured and compact repre-

sentation, allows a large portion of the workspaee to be ignored,

and enables real-time updating [5]. ltowever, these advantages

depend on the decomposition rules, and those in turn are dic-

tated by the environment and the tasks to be performed.

Once an imminent collision between objects is detected, the

system must decide what action should be taken: either stop

the telerobot manipulator from further advancement, or set

some constraints on the movement of the arm. In order to

make this decision, the system must recognize intentional con-

198

tact and unintentional collision. One solution to this problem

is by relying on knowledge of the objects' role with respect

to the telerobotic task. For our particular task, objects are

defined by their primitive role of either supporting or manip-

ulating; in addition to their shape, size, and position. Based

on this knowledge, the system could infer certain assumptions

about the telerobot's intentions as it approaches objects. Con-

sequently, it signals the control system to decreases the arm's

movements (in the case of intentional contacts) and outputs

warning message, or it inhibits any further advanced of the

robot (if it is unintentional collisions). System knowledge of

these objects' characteristics help reduce tedious interaction

required of the users. However, there is a cost to such ap-

proaches. It might lead to collisions of objects due to incorrect

assumptions by the system.

4 Discussion

The issue of distinguishing unintentional collisions from inten-

tional contacts has been addressed. What has not been ad-

dressed is the issue of interfacing between the collision detec-

tion algorithm and other sub-systems within the telerobotic

system. In particular, issues that involve describing the world

model, database of manipulated and displaced objects by the

telerobotic's arm, and handling collisions between objects. Thes

problems need to be resolved in order for the manipulator to

operate safely and efficiently in a more complex and realistic

environment. In the following paragraphs, we address these

issues in hope that further research will be conducted to shed

some understanding on the problems and their solutions.

The issue of efficient versus effective safeguarding of the op-

eration of the telerobotic manipulator lies partly on the rep-

resentation of object. In generalizing objects as either solid

rectangulars or solid cylinders, we can in effect increase the

performance of the safety system due to the simplification of

computing objects. By doing so, on the other hand, we have

constrained the arm to operate effectively on objects. View

a table as a solid rectangular object, for example, we would

reduce the computational time describing and detecting colli-

sion of objects. But we also inhibit the arm from operating in

the space which is under the table. Another classical problem

is, how to describe contained objects, such as, a camera in an

0RU box. In addition to the redundancy of computing objects,

if we differentiate them, we are faced with the problem of pro-

cessing knowledge that the displacement of the camera might

not alter the position of the box but not vice versa. However,

if we initialy define the ORU box and its contained camera as

one whole object; then any attempt by the telerobotic arm to

access the camera will not be possible, since it is viewed as a

collision of the arm with the ORU.

Another problem involving safety issues is, when an object is

manipulated and displaced by the end-effector. Under this sce-

nario, dynamic or real-time updating of that object's orienta-

tion and position are required to detect any imminent collision

between the object and other stationary objects or with the

arm. It also demands knowledge of which events would cause

alternation in object shape while its orientation and position

remain fixed. Take an 0RU box, for example, where its door

is opened by the end-effector. This event requires detection

of any collision between the open door with objects (including

the arm) that are in its path. It also requires system knowl-

edge that updating the object should only be focused on its

shape and not on its position or orientation. In contrast, only

the orientation and position of the 0RU box are required to

be modified, if the arm moves it to another place.

One final issue is one of handling collisions. This problem

involves not only when and how to stop moving objects (par-

ticularly the telerobotic arm); but also the issue of what infor-

mation regarding the current environment should be retained

prior to system (or components) shut-down must be considered

as part of handling a collision. This is due to the fact that,

system restarting requires information of the current world.

Acknowledgements

We would like to thank Ravi Kaipa for editing this paper.

Thanks are also due to, in alphabetical order: Russ Byrne,

Christ Sbenton, Scott Swetz, and Janice Tarrant for their help-

ful comments and suggestions. Research sponsored by NASA

Goddard Space Flight Center, Greenbelt, MD.

199

References

[1] Boyse J.W., "Interference Detection Among Solids and

Surfaces," Comm. ACM, vol 22, no. 1, Jan 1979, pp. 3-9.

[2] Carlbom 1., Chakravarty I., and Vanderschel D., "A Hier-

archical Data Structure for Representing the Spatial De-

composition of 3-D Objects," IEEE Comp. Graph. Appli-

cations, vol 5, no. 4, Apr 1985, pp. 24-31.

[3] Glassner A.S., "Space Subdivision for Fast Ray Tracing,"

IEEE Comp. Graph. Application, vol 4, Oct 1984, pp.

15-22.

[4] Herb G.M. and Shaffer C.A., "A Real Time Robot Colli-

sion Avoidance Safety System,"

[5] Hong T. and Shneier M.O., "Describing a Robot's

Workspace Using a Sequence of Views from a Moving

Camera," IEEE Trans. Pattern Anal. Machine Intell., vol

PAMI-7, no. 6, Nov 1985, pp. 721-726.

[6] Jackins C.L. and Tanimoto S.L., "Oct-Trees and Their

Use in Representing Three-Dimensional Objects," Comp.

Graph. Image Processing, vol 14, no. 3, Nov 1980, pp.
249-270.

[7] Meagher D., "Geometric Modeling Using Octree Encod-

ing," Comp. Graph. Image Processing, vol 19, no. 2, Jun

1982, pp. 129-147.

[8] Samet H., "Neighbor Finding in Images Represented by

Octrees," Comp. Vision, Graphics, and Image Processing,

vol 46, 1989, pp. 367-386.

2OO

